using CSV
using DataFrames
Learn DataFrames.jl
学习Julia
Julia
1 导入库
2 读取数据
= CSV.read("../data/203st_idw_interp_0.05deg.csv", DataFrame)
df # df = CSV.read("I:/order_data/Xujw/203st_idw_interp_0.05deg.csv", DataFrame)
# copy(df) 复制df df
203 rows × 7 columns
site | lon | lat | Eh | V | Ni | Ba | |
---|---|---|---|---|---|---|---|
String15 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 19G26 | 111.8 | 29.07 | 33.2 | 0.08 | 1.55 | 126.99 |
2 | 22G-80 | 111.93 | 28.94 | 163.6 | 0.45 | 2.77 | 71.83 |
3 | 19G22 | 111.95 | 28.98 | -48.0 | 0.17 | 1.18 | 161.81 |
4 | 22G-83 | 111.98 | 29.11 | 64.8 | 0.25 | 0.59 | 136.21 |
5 | 22G-81 | 112.03 | 29.04 | 143.1 | 0.97 | 1.83 | 124.54 |
6 | 20DT-19G | 112.07 | 29.09 | 26.0 | 0.853692 | 1.28 | 173.21 |
7 | 19G21 | 112.14 | 28.87 | 143.0 | 0.06 | 1.16 | 5.54 |
8 | 20DT-17G | 112.14 | 29.0 | -60.8 | 0.590868 | 0.7 | 258.56 |
9 | 22G-82 | 112.2 | 29.08 | 96.1 | 0.36 | 1.04 | 183.63 |
10 | 22G-90 | 112.2 | 29.66 | -88.1 | 0.06 | 1.8 | 167.24 |
11 | 22G-88 | 112.24 | 29.27 | 115.5 | 0.51 | 2.29 | 20.98 |
12 | 22G-85 | 112.26 | 29.18 | 90.5 | 0.310593 | 4.08 | 476.34 |
13 | DT02G | 112.26 | 29.59 | -29.3 | 0.53 | 2.16 | 234.38 |
14 | 18S-38G | 112.29 | 29.07 | 158.0 | 0.08 | 0.71 | 22.6 |
15 | 18S-25G | 112.3 | 29.77 | -88.1 | 0.02 | 0.22 | 112.0 |
16 | 18S-24G | 112.3 | 29.81 | -80.0 | 0.14 | 0.2 | 153.0 |
17 | 22G-87 | 112.31 | 29.29 | 40.9 | 0.55 | 2.34 | 421.78 |
18 | DT01G | 112.31 | 29.32 | -29.1 | 0.24 | 2.13 | 240.8 |
19 | DT03G | 112.31 | 29.62 | 81.1 | 0.14 | 1.59 | 404.23 |
20 | 18S-23G | 112.31 | 29.84 | -103.0 | 0.2 | 1.0 | 210.0 |
21 | 18S-27G | 112.32 | 29.67 | 97.3386 | 0.26 | 1.88 | 125.25 |
22 | 21DT-26G | 112.33 | 29.14 | -48.6 | 0.191896 | 1.70282 | 502.1 |
23 | 21DT-23G | 112.33 | 29.21 | -31.0 | 0.372661 | 2.26989 | 904.77 |
24 | 18S-37G | 112.35 | 29.05 | -49.0 | 0.19 | 0.0 | 65.6 |
25 | 22G-84 | 112.35 | 29.18 | 122.5 | 0.28 | 2.35 | 257.15 |
26 | 18S-22G | 112.35 | 29.85 | -120.0 | 0.265757 | 3.79 | 615.0 |
27 | 20DT-29G | 112.37 | 28.96 | -88.2 | 0.179396 | 1.98 | 274.92 |
28 | 22G-92 | 112.38 | 29.53 | -35.1 | 0.1 | 1.93 | 111.83 |
29 | 18S-20G | 112.38 | 29.88 | -142.0 | 0.47 | 3.3 | 541.0 |
30 | 22G-91 | 112.39 | 29.66 | 177.2 | 1.88 | 4.19 | 164.61 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
3 取出某一行
3.1 方法1
# df."V" df.V
203-element Vector{Float64}:
0.08
0.45
0.17
0.25
0.97
0.85369167324573
0.06
0.590868123957716
0.36
0.06
0.51
0.310592788968676
0.53
⋮
0.11
0.08
0.47
0.15
0.11
0.82
0.07
0.36
0.12
0.2
0.3
0.288668959788242
3.2 方法2
:, :V] # 这种情况下取值更改不会改变之前的数据框内容 df[
203-element Vector{Float64}:
0.08
0.45
0.17
0.25
0.97
0.85369167324573
0.06
0.590868123957716
0.36
0.06
0.51
0.310592788968676
0.53
⋮
0.11
0.08
0.47
0.15
0.11
0.82
0.07
0.36
0.12
0.2
0.3
0.288668959788242
4 列名
names(df, AbstractString) # 筛选出不同数据类型的列名
names(df, Float64)
6-element Vector{String}:
"lon"
"lat"
"Eh"
"V"
"Ni"
"Ba"
5 创建一个0行但包含全部列名的df
empty(df) # empty!()直接让目标df清空
0 rows × 7 columns
site | lon | lat | Eh | V | Ni | Ba | |
---|---|---|---|---|---|---|---|
String15 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 |
6 查看df基本信息
df维度:
size(df) # 维度
nrow(df) # ncol()
203
统计信息,类似R语言summary
describe(df, cols=4:7)
4 rows × 7 columns
variable | mean | min | median | max | nmissing | eltype | |
---|---|---|---|---|---|---|---|
Symbol | Float64 | Float64 | Float64 | Float64 | Int64 | DataType | |
1 | Eh | -54.8574 | -278.3 | -72.2 | 177.2 | 0 | Float64 |
2 | V | 0.344441 | 0.0 | 0.259441 | 1.88 | 0 | Float64 |
3 | Ni | 2.46611 | 0.0 | 2.14 | 8.39 | 0 | Float64 |
4 | Ba | 253.259 | 0.01 | 195.07 | 1752.0 | 0 | Float64 |
7 筛选df
:, [:lon, :lat]] df[
203 rows × 2 columns
lon | lat | |
---|---|---|
Float64 | Float64 | |
1 | 111.8 | 29.07 |
2 | 111.93 | 28.94 |
3 | 111.95 | 28.98 |
4 | 111.98 | 29.11 |
5 | 112.03 | 29.04 |
6 | 112.07 | 29.09 |
7 | 112.14 | 28.87 |
8 | 112.14 | 29.0 |
9 | 112.2 | 29.08 |
10 | 112.2 | 29.66 |
11 | 112.24 | 29.27 |
12 | 112.26 | 29.18 |
13 | 112.26 | 29.59 |
14 | 112.29 | 29.07 |
15 | 112.3 | 29.77 |
16 | 112.3 | 29.81 |
17 | 112.31 | 29.29 |
18 | 112.31 | 29.32 |
19 | 112.31 | 29.62 |
20 | 112.31 | 29.84 |
21 | 112.32 | 29.67 |
22 | 112.33 | 29.14 |
23 | 112.33 | 29.21 |
24 | 112.35 | 29.05 |
25 | 112.35 | 29.18 |
26 | 112.35 | 29.85 |
27 | 112.37 | 28.96 |
28 | 112.38 | 29.53 |
29 | 112.38 | 29.88 |
30 | 112.39 | 29.66 |
⋮ | ⋮ | ⋮ |
8 条件筛选
9 常规
:, Not([:site, :lon, :lat])] df[
203 rows × 4 columns
Eh | V | Ni | Ba | |
---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | |
1 | 33.2 | 0.08 | 1.55 | 126.99 |
2 | 163.6 | 0.45 | 2.77 | 71.83 |
3 | -48.0 | 0.17 | 1.18 | 161.81 |
4 | 64.8 | 0.25 | 0.59 | 136.21 |
5 | 143.1 | 0.97 | 1.83 | 124.54 |
6 | 26.0 | 0.853692 | 1.28 | 173.21 |
7 | 143.0 | 0.06 | 1.16 | 5.54 |
8 | -60.8 | 0.590868 | 0.7 | 258.56 |
9 | 96.1 | 0.36 | 1.04 | 183.63 |
10 | -88.1 | 0.06 | 1.8 | 167.24 |
11 | 115.5 | 0.51 | 2.29 | 20.98 |
12 | 90.5 | 0.310593 | 4.08 | 476.34 |
13 | -29.3 | 0.53 | 2.16 | 234.38 |
14 | 158.0 | 0.08 | 0.71 | 22.6 |
15 | -88.1 | 0.02 | 0.22 | 112.0 |
16 | -80.0 | 0.14 | 0.2 | 153.0 |
17 | 40.9 | 0.55 | 2.34 | 421.78 |
18 | -29.1 | 0.24 | 2.13 | 240.8 |
19 | 81.1 | 0.14 | 1.59 | 404.23 |
20 | -103.0 | 0.2 | 1.0 | 210.0 |
21 | 97.3386 | 0.26 | 1.88 | 125.25 |
22 | -48.6 | 0.191896 | 1.70282 | 502.1 |
23 | -31.0 | 0.372661 | 2.26989 | 904.77 |
24 | -49.0 | 0.19 | 0.0 | 65.6 |
25 | 122.5 | 0.28 | 2.35 | 257.15 |
26 | -120.0 | 0.265757 | 3.79 | 615.0 |
27 | -88.2 | 0.179396 | 1.98 | 274.92 |
28 | -35.1 | 0.1 | 1.93 | 111.83 |
29 | -142.0 | 0.47 | 3.3 | 541.0 |
30 | 177.2 | 1.88 | 4.19 | 164.61 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
:, Between(:site, :lat)] df[
203 rows × 3 columns
site | lon | lat | |
---|---|---|---|
String15 | Float64 | Float64 | |
1 | 19G26 | 111.8 | 29.07 |
2 | 22G-80 | 111.93 | 28.94 |
3 | 19G22 | 111.95 | 28.98 |
4 | 22G-83 | 111.98 | 29.11 |
5 | 22G-81 | 112.03 | 29.04 |
6 | 20DT-19G | 112.07 | 29.09 |
7 | 19G21 | 112.14 | 28.87 |
8 | 20DT-17G | 112.14 | 29.0 |
9 | 22G-82 | 112.2 | 29.08 |
10 | 22G-90 | 112.2 | 29.66 |
11 | 22G-88 | 112.24 | 29.27 |
12 | 22G-85 | 112.26 | 29.18 |
13 | DT02G | 112.26 | 29.59 |
14 | 18S-38G | 112.29 | 29.07 |
15 | 18S-25G | 112.3 | 29.77 |
16 | 18S-24G | 112.3 | 29.81 |
17 | 22G-87 | 112.31 | 29.29 |
18 | DT01G | 112.31 | 29.32 |
19 | DT03G | 112.31 | 29.62 |
20 | 18S-23G | 112.31 | 29.84 |
21 | 18S-27G | 112.32 | 29.67 |
22 | 21DT-26G | 112.33 | 29.14 |
23 | 21DT-23G | 112.33 | 29.21 |
24 | 18S-37G | 112.35 | 29.05 |
25 | 22G-84 | 112.35 | 29.18 |
26 | 18S-22G | 112.35 | 29.85 |
27 | 20DT-29G | 112.37 | 28.96 |
28 | 22G-92 | 112.38 | 29.53 |
29 | 18S-20G | 112.38 | 29.88 |
30 | 22G-91 | 112.39 | 29.66 |
⋮ | ⋮ | ⋮ | ⋮ |
9.1 正则表达式
:, r"l"] df[
203 rows × 2 columns
lon | lat | |
---|---|---|
Float64 | Float64 | |
1 | 111.8 | 29.07 |
2 | 111.93 | 28.94 |
3 | 111.95 | 28.98 |
4 | 111.98 | 29.11 |
5 | 112.03 | 29.04 |
6 | 112.07 | 29.09 |
7 | 112.14 | 28.87 |
8 | 112.14 | 29.0 |
9 | 112.2 | 29.08 |
10 | 112.2 | 29.66 |
11 | 112.24 | 29.27 |
12 | 112.26 | 29.18 |
13 | 112.26 | 29.59 |
14 | 112.29 | 29.07 |
15 | 112.3 | 29.77 |
16 | 112.3 | 29.81 |
17 | 112.31 | 29.29 |
18 | 112.31 | 29.32 |
19 | 112.31 | 29.62 |
20 | 112.31 | 29.84 |
21 | 112.32 | 29.67 |
22 | 112.33 | 29.14 |
23 | 112.33 | 29.21 |
24 | 112.35 | 29.05 |
25 | 112.35 | 29.18 |
26 | 112.35 | 29.85 |
27 | 112.37 | 28.96 |
28 | 112.38 | 29.53 |
29 | 112.38 | 29.88 |
30 | 112.39 | 29.66 |
⋮ | ⋮ | ⋮ |
10 转换函数
共五种方法:
combine
select
transformselect
导入分组统计所需包
using Statistics
求V
的平均值
combine(df, :V => mean => :mean_V)
1 rows × 1 columns
mean_V | |
---|---|
Float64 | |
1 | 0.344441 |
筛选lon
select(df, :lon => mean => :mean_lon)
203 rows × 1 columns
mean_lon | |
---|---|
Float64 | |
1 | 112.868 |
2 | 112.868 |
3 | 112.868 |
4 | 112.868 |
5 | 112.868 |
6 | 112.868 |
7 | 112.868 |
8 | 112.868 |
9 | 112.868 |
10 | 112.868 |
11 | 112.868 |
12 | 112.868 |
13 | 112.868 |
14 | 112.868 |
15 | 112.868 |
16 | 112.868 |
17 | 112.868 |
18 | 112.868 |
19 | 112.868 |
20 | 112.868 |
21 | 112.868 |
22 | 112.868 |
23 | 112.868 |
24 | 112.868 |
25 | 112.868 |
26 | 112.868 |
27 | 112.868 |
28 | 112.868 |
29 | 112.868 |
30 | 112.868 |
⋮ | ⋮ |
随便选
select(df, r"l", "site", :V)
203 rows × 4 columns
lon | lat | site | V | |
---|---|---|---|---|
Float64 | Float64 | String15 | Float64 | |
1 | 111.8 | 29.07 | 19G26 | 0.08 |
2 | 111.93 | 28.94 | 22G-80 | 0.45 |
3 | 111.95 | 28.98 | 19G22 | 0.17 |
4 | 111.98 | 29.11 | 22G-83 | 0.25 |
5 | 112.03 | 29.04 | 22G-81 | 0.97 |
6 | 112.07 | 29.09 | 20DT-19G | 0.853692 |
7 | 112.14 | 28.87 | 19G21 | 0.06 |
8 | 112.14 | 29.0 | 20DT-17G | 0.590868 |
9 | 112.2 | 29.08 | 22G-82 | 0.36 |
10 | 112.2 | 29.66 | 22G-90 | 0.06 |
11 | 112.24 | 29.27 | 22G-88 | 0.51 |
12 | 112.26 | 29.18 | 22G-85 | 0.310593 |
13 | 112.26 | 29.59 | DT02G | 0.53 |
14 | 112.29 | 29.07 | 18S-38G | 0.08 |
15 | 112.3 | 29.77 | 18S-25G | 0.02 |
16 | 112.3 | 29.81 | 18S-24G | 0.14 |
17 | 112.31 | 29.29 | 22G-87 | 0.55 |
18 | 112.31 | 29.32 | DT01G | 0.24 |
19 | 112.31 | 29.62 | DT03G | 0.14 |
20 | 112.31 | 29.84 | 18S-23G | 0.2 |
21 | 112.32 | 29.67 | 18S-27G | 0.26 |
22 | 112.33 | 29.14 | 21DT-26G | 0.191896 |
23 | 112.33 | 29.21 | 21DT-23G | 0.372661 |
24 | 112.35 | 29.05 | 18S-37G | 0.19 |
25 | 112.35 | 29.18 | 22G-84 | 0.28 |
26 | 112.35 | 29.85 | 18S-22G | 0.265757 |
27 | 112.37 | 28.96 | 20DT-29G | 0.179396 |
28 | 112.38 | 29.53 | 22G-92 | 0.1 |
29 | 112.38 | 29.88 | 18S-20G | 0.47 |
30 | 112.39 | 29.66 | 22G-91 | 1.88 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
改列名
select(df, :lon => :new_lon, :)
203 rows × 8 columns
new_lon | site | lon | lat | Eh | V | Ni | Ba | |
---|---|---|---|---|---|---|---|---|
Float64 | String15 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 111.8 | 19G26 | 111.8 | 29.07 | 33.2 | 0.08 | 1.55 | 126.99 |
2 | 111.93 | 22G-80 | 111.93 | 28.94 | 163.6 | 0.45 | 2.77 | 71.83 |
3 | 111.95 | 19G22 | 111.95 | 28.98 | -48.0 | 0.17 | 1.18 | 161.81 |
4 | 111.98 | 22G-83 | 111.98 | 29.11 | 64.8 | 0.25 | 0.59 | 136.21 |
5 | 112.03 | 22G-81 | 112.03 | 29.04 | 143.1 | 0.97 | 1.83 | 124.54 |
6 | 112.07 | 20DT-19G | 112.07 | 29.09 | 26.0 | 0.853692 | 1.28 | 173.21 |
7 | 112.14 | 19G21 | 112.14 | 28.87 | 143.0 | 0.06 | 1.16 | 5.54 |
8 | 112.14 | 20DT-17G | 112.14 | 29.0 | -60.8 | 0.590868 | 0.7 | 258.56 |
9 | 112.2 | 22G-82 | 112.2 | 29.08 | 96.1 | 0.36 | 1.04 | 183.63 |
10 | 112.2 | 22G-90 | 112.2 | 29.66 | -88.1 | 0.06 | 1.8 | 167.24 |
11 | 112.24 | 22G-88 | 112.24 | 29.27 | 115.5 | 0.51 | 2.29 | 20.98 |
12 | 112.26 | 22G-85 | 112.26 | 29.18 | 90.5 | 0.310593 | 4.08 | 476.34 |
13 | 112.26 | DT02G | 112.26 | 29.59 | -29.3 | 0.53 | 2.16 | 234.38 |
14 | 112.29 | 18S-38G | 112.29 | 29.07 | 158.0 | 0.08 | 0.71 | 22.6 |
15 | 112.3 | 18S-25G | 112.3 | 29.77 | -88.1 | 0.02 | 0.22 | 112.0 |
16 | 112.3 | 18S-24G | 112.3 | 29.81 | -80.0 | 0.14 | 0.2 | 153.0 |
17 | 112.31 | 22G-87 | 112.31 | 29.29 | 40.9 | 0.55 | 2.34 | 421.78 |
18 | 112.31 | DT01G | 112.31 | 29.32 | -29.1 | 0.24 | 2.13 | 240.8 |
19 | 112.31 | DT03G | 112.31 | 29.62 | 81.1 | 0.14 | 1.59 | 404.23 |
20 | 112.31 | 18S-23G | 112.31 | 29.84 | -103.0 | 0.2 | 1.0 | 210.0 |
21 | 112.32 | 18S-27G | 112.32 | 29.67 | 97.3386 | 0.26 | 1.88 | 125.25 |
22 | 112.33 | 21DT-26G | 112.33 | 29.14 | -48.6 | 0.191896 | 1.70282 | 502.1 |
23 | 112.33 | 21DT-23G | 112.33 | 29.21 | -31.0 | 0.372661 | 2.26989 | 904.77 |
24 | 112.35 | 18S-37G | 112.35 | 29.05 | -49.0 | 0.19 | 0.0 | 65.6 |
25 | 112.35 | 22G-84 | 112.35 | 29.18 | 122.5 | 0.28 | 2.35 | 257.15 |
26 | 112.35 | 18S-22G | 112.35 | 29.85 | -120.0 | 0.265757 | 3.79 | 615.0 |
27 | 112.37 | 20DT-29G | 112.37 | 28.96 | -88.2 | 0.179396 | 1.98 | 274.92 |
28 | 112.38 | 22G-92 | 112.38 | 29.53 | -35.1 | 0.1 | 1.93 | 111.83 |
29 | 112.38 | 18S-20G | 112.38 | 29.88 | -142.0 | 0.47 | 3.3 | 541.0 |
30 | 112.39 | 22G-91 | 112.39 | 29.66 | 177.2 | 1.88 | 4.19 | 164.61 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
11 尝试管道符
参考学习链接:Comparing dplyr vs DataFrames.jl
using Pipe
@time @pipe df |>
combine(_, :V => (x -> x) => :V_mean, :) |>
-> begin
(df = df.V
df.new_col
dfend) |>
filter(:V_mean => v -> v >0, _) |>
sort(_, :new_col)
0.973227 seconds (3.08 M allocations: 205.192 MiB, 5.03% gc time, 99.52% compilation time)
193 rows × 9 columns
V_mean | site | lon | lat | Eh | V | Ni | Ba | new_col | |
---|---|---|---|---|---|---|---|---|---|
Float64 | String15 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
1 | 0.01 | 12JH093 | 112.85 | 29.94 | -218.5 | 0.01 | 2.09 | 184.509 | 0.01 |
2 | 0.02 | 18S-25G | 112.3 | 29.77 | -88.1 | 0.02 | 0.22 | 112.0 | 0.02 |
3 | 0.04 | 12JH076 | 112.58 | 30.29 | -90.0 | 0.04 | 2.47 | 170.86 | 0.04 |
4 | 0.04 | 18G-05 | 113.51 | 29.84 | 87.5 | 0.04 | 0.31 | 59.45 | 0.04 |
5 | 0.05 | 22G-86 | 112.43 | 29.39 | -7.6 | 0.05 | 1.47 | 160.13 | 0.05 |
6 | 0.05 | 22G-73 | 112.81 | 29.42 | -78.5 | 0.05 | 3.49 | 120.7 | 0.05 |
7 | 0.05 | 18G-11 | 113.26 | 29.61 | -83.2 | 0.05 | 0.06 | 275.26 | 0.05 |
8 | 0.0558746 | 22G-70 | 113.56 | 29.88 | -50.4 | 0.0558746 | 8.39 | 58.55 | 0.0558746 |
9 | 0.06 | 19G21 | 112.14 | 28.87 | 143.0 | 0.06 | 1.16 | 5.54 | 0.06 |
10 | 0.06 | 22G-90 | 112.2 | 29.66 | -88.1 | 0.06 | 1.8 | 167.24 | 0.06 |
11 | 0.06 | 19G14 | 112.69 | 29.15 | -81.0 | 0.06 | 0.99 | 120.31 | 0.06 |
12 | 0.07 | 18G-19 | 112.63 | 29.78 | -14.3 | 0.07 | 0.45 | 510.65 | 0.07 |
13 | 0.07 | 18G-25 | 112.64 | 29.95 | -72.0 | 0.07 | 1.31 | 58.46 | 0.07 |
14 | 0.07 | 18G-26 | 112.68 | 29.97 | -103.0 | 0.07 | 0.52 | 34.09 | 0.07 |
15 | 0.07 | 18G-28 | 112.72 | 29.96 | -104.0 | 0.07 | 0.8 | 63.87 | 0.07 |
16 | 0.07 | 12JH163 | 113.02 | 29.55 | -135.8 | 0.07 | 3.62 | 430.359 | 0.07 |
17 | 0.07 | 18G-03 | 113.61 | 29.94 | -42.7 | 0.07 | 1.62 | 289.92 | 0.07 |
18 | 0.07 | 11JH183 | 113.77 | 30.07 | -54.8787 | 0.07 | 0.44 | 155.31 | 0.07 |
19 | 0.08 | 19G26 | 111.8 | 29.07 | 33.2 | 0.08 | 1.55 | 126.99 | 0.08 |
20 | 0.08 | 18S-38G | 112.29 | 29.07 | 158.0 | 0.08 | 0.71 | 22.6 | 0.08 |
21 | 0.08 | 19G18 | 112.65 | 28.98 | 55.0 | 0.08 | 0.49 | 70.17 | 0.08 |
22 | 0.08 | 22G-74 | 112.78 | 29.29 | -64.1 | 0.08 | 4.06 | 412.63 | 0.08 |
23 | 0.08 | 11JH164 | 113.39 | 30.07 | -77.5002 | 0.08 | 0.59 | 157.01 | 0.08 |
24 | 0.08 | 11JH161 | 113.69 | 30.09 | -54.3 | 0.08 | 0.63 | 213.16 | 0.08 |
25 | 0.09 | 18G-27 | 112.72 | 29.92 | -75.6 | 0.09 | 0.09 | 39.12 | 0.09 |
26 | 0.09 | 22G-20 | 112.97 | 29.52 | -124.0 | 0.09 | 7.03 | 370.84 | 0.09 |
27 | 0.09 | 22G-12 | 113.06 | 29.96 | -86.4 | 0.09 | 3.28 | 180.59 | 0.09 |
28 | 0.09 | 11JH162 | 113.64 | 30.09 | -72.7851 | 0.09 | 0.59 | 100.8 | 0.09 |
29 | 0.1 | 22G-92 | 112.38 | 29.53 | -35.1 | 0.1 | 1.93 | 111.83 | 0.1 |
30 | 0.1 | 19G19 | 112.75 | 28.91 | 78.5 | 0.1 | 0.45 | 15.27 | 0.1 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |